Journal of Statistical Physics, Vol 52, Nos. 5/6, 1988

Dynamic and Thermodynamic Consequences of
Adsorbate Lateral Interactions in Surface
Reaction Kinetics*

M. Silverberg'* and A. Ben-Shaul'

Received April 4, 1988

The effects of lateral interactions on the two-dimensional distribution of
adspecies on solid surfaces and their consequences for reaction kinetics are
demonstrated for the bimolecular reactive system A4+ B — AB. The discussion
concentrates on systems where one reactant, A, is stationary while the other, B,
is freely diffusing and instantaneously relaxing. A modified Bethe—Peierls-type
lattice gas approximation is formulated in order to account for the rapidly
equilibrating distribution of B atoms. The approximation takes into account all
nearest and next nearest neighbor interactions between the adspecies and the
nonuniformity of the lattice available to B implied by the presence of immobile
A’s on the surface. This model is combined with a Monte Carlo simulation of
the reactive events in order to calculate reaction rates, e.g., in temperature-
programmed processes. The rates are compared with full Monte Carlo
simulations (for all kinetic processes), showing good agreement between the two
schemes, except at very high coverages, where very long range correlations in
the system which are ignored in the lattice gas approximation must be taken
into account.

KEY WORDS: Surface reactions; adsorbate lateral interactions; islanding;
lattice gas approximations; Monte Carlo; temperature-programmed reaction
spectroscopy.

1. INTRODUCTION

The rates of kinetic processes taking place on solid surfaces depend
crucially on the two-dimensional {2D) distribution of the adspecies and on
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lateral interactions between the adsorbed particles. Consider, for example,
the bimolecular reaction

A(s)+ B(s}y—> AB(g) (1)

in which both reactants are adsorbed on the surface (s = surface), while 4B
is a rapidly desorbing product (g = gas); the catalytic oxidation of carbon
monoxide, O 4+ CO — CO, on, say, platinum surfaes is one of the best
known examples for such a process.'” If 4 and B are randomly distributed
over the surface, then the rate of (1) will be proportional to the product of
their coverages, i.e., R~ 8,05, with 0 , denoting the fraction of lattice sites
occupied by 4, etc. This, however, is a very special case corresponding to a
system in which the adspecies do not interact with each other and further-
more their diffusion rates are large compared to the rate of reactive events,
so as to ensure instantaneous equilibration at all times. In most systems of
interest lateral interactions cannot be ignored (especially at high coverages)
and mobilities of different adspecies are often markedly different; e.g., in the
O + CO - CO, system the O atoms are essentially stationary while the CO
molecules diffuse freely on the surface, at most reaction temperatures.

The effects of lateral interactions on reaction rates are manifested in
two (related) aspects: topologically and energetically. By topological effects
we refer to the fact that lateral interactions can induce highly nonrandom
distributions of the adspecies on the 2D lattice, thereby influencing, e.g., in
reaction (1), the frequency of A+ B encounters (ie., occupation of
neighboring sites). The energetic effects correspond to the influence of
neighboring adspecies on the reaction probability of a potentially reactive
A-B pair (i.e., A-B occupying neighboring adsorption sites). This is mainly
reflected in the activation barrier for reaction, which may be appreciably
modified by lateral interactions between A-B and its local environment.

In order to be a little more specific, let us consider a bimolecular
reactive system of the type (1) in which one of the adsorbed reactants (A)
is stationary, while the other (B) diffuses rapidly over the remaining
(“A-free™) lattice sites. We also assume that reaction can only occur when
B reaches a lattice site which is a {nearest or other “low-order”) neighbor
of an A-occupied site. To simplify matters even further, suppose also that
the characteristic time of reaction t (ie., the reciprocal reaction
probability of a potentially reactive A-B pair) is considerably longer
than 1, the time between consecutive random walks of B on the lattice.
This last assumption ensures that {B| A}, the distribution of B atoms on
the sublattice of A-free sites, is always in thermodyamic equilibrium.

In a system with nonzero lateral interactions, calculating the 2D dis-
tribution of adspecies is nontrivial even for a simple uniform lattice, where
all sites are equivalent. This is all the more so for {B]A4} on the non-
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uniform sublattice prescribed to B by the quenched distribution of A’s
({4}) in a system with arbitrary B—B and 4-B potentials. In our problem
we need {B|A4} to calculate the number of 4-B pairs (and their local
environments), which determine the rate of reaction R. The calculation of
R for a given {B| A4}, and the modification of {4} following the removal
A-B pairs from the surface, may be simply and efficiently modelled by a
Monte Carlo (MC) simulation algorithm, as will be described in Sec-
tion 2.3. Simulation methods can also be applied to calculate {B|A}, but
are very costly (in terms of computer time) for modeling reactive systems.
This is particularly so for systems with varying temperature conditions,
as in temperature-programmed reaction experiments which serve as a
principal source for kinetic information.

If {B|A4} is an equilibrium distribution, as we assume here, one might
expect that it may be calculated using more “analytical” (and “less expen-
sive”) methods than computer simulations. Indeed, we have recently shown
how two familiar lattice gas approximations may be reformulated in order
to calculate {B|A} for an arbitrary given {4} in systems governed by
nearest neighbor 4-B and B-B potentials.’”> These were modified versions
of the mean-field (Bragg-Williams), and the quasichemical
(Bethe—Guggenheim ) approximations (MFA and QCA, respectively). The
approximate {B|A}’s are derived by first expressing the many-particle dis-
tribution as a product of singlet (MFA) or doublet (QCA) distributions,
which are subsequently determined by minimizing the system free energy
subject to conservation (self-consistency) conditions.®

The modified lattice gas models for {B|A4} mentioned above have
been incorporated into a more general theoretical modeling scheme for
reactive surface processes of the type (1). In this approach MC methods are
used to describe the slow temporal evolution of the nonequilibrium {A4}
(i.e., prior to B adsorption) and the A4 + B reaction-desorption, while the
lattice gas models are used to calculate the rapidly relaxing {B|A4}. Com-
parisons with full MC calculations, i.e., those in which MC methods are
used for B diffusion as well, show very good agreement between the two
schemes. However, for simplicity, the range of lateral 4-4, B-B, and A-B
interactions has been limited in these analyses to nearest neighbors only.?
In most systems of interest lateral interactions extend to next nearest,
and quite often to third or even higher order, neighbors. The physical
implications are most significant. In particular, the preferred adlayer
periodicities will generally be higher than the 1 x | structure characterizing
a system with nearest neighbor attractions. This implies the existence of
ground-state degeneracy, domain boundary effects, and phase transitions
between several ordered states which may be induced by changes in
coverage or temperature. Correspondingly, a reasonable lattice gas model
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for {B|A} in such systems should take into account higher order
correlations between the adspecies. Such a model, which is an extension of
the Bethe—Peierls approximation, ) appropriately modified to account for
the existence of quenched {4} (or more generally, a nonuniform lattice), is
described in Section 2 and compared with MC simulations in Section 3.
But before turning to the more technical details, a few remarks should be
made regarding the physical significance and the calculation of {4}, the
distribution of the less mobile species.

Lateral interactions between chemisorbed species are typically much
smaller than the adsorbate-substrate bond (~0.1eV versus a few eV).®
Nevertheless, these interactions may be strong enough to favor an ordered
phase as the stable thermodynamic state, even at low coverages.”* Thus,
if, for instance, the A atoms in (1) strongly attract each other, then an
initially disordered distribution (reflecting, ¢.g., a random adsorption
mechanism) will gradually evolve into an ordered phase. An intermediate,
nonequilibrium, yet long-lived state which often occurs in the course of a
disorder — order transition is characterized by the organization of the 4
atoms in islands.”"® These are finite ordered domains whose further
growth slows down considerably due to severe kinetic limitations. Now,
suppose that B atoms are added at this stage to the regions between A
islands and reaction occurs upon their diffusion and arrival at A-island
boundaries. Clearly, in this case R will be very different from the case of
random {4, B}. In fact, if the A4 islands have smooth boundaries and
{B| A} is random, one expects>”) R~ 6Y2[0,/(1 -6 ,)]. This, however, is
a highly idealized special case. Computer simulations reveal quite clearly
that the islands formed in the course of a phase transition are typically
characterized by polydisperse size distributions and highly ramified
“coastlines.”"® (Available electron'® and atom™"’ diffraction experiments
reveal information about the size of islands but not on their detailed shape.
Also, island formation is clearly indicated by many kinetic studies.!>1%)
Such complex island patterns characterize the quenched {A} distributions
considered here. The islands depicted in Section 3 have been calculated by
MC simulations, starting with random {4} and letting it evolve according
to conserved (Kawaski) MC dynamics, as is frequently done in kinetic
analyses of phase transitions.®"’

The issues considered in this paper interweave chemical {reaction) and
physical (diffusion and phase transition) kinetics with equilibrium
statistical thermodynamic considerations. Many physical and chemical
problems combining these aspects have previously been studied by Prof.
Howard Reiss to whom this volume is dedicated. His well-known con-
tributions to the theory of nucleation (see, e.g., ref. 14) and phase transition
kinetics, including its recent implementation in the context of gas-phase
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chain polymerization (see, e.g., ref. 15), constitute one relevant example.
Another work of Reiss which is of direct relevance to the present study is
his proof that superposition approximations of all orders can be derived
from a variation principle. Our derivations of the modified MFA and QCA
mentioned above'”’ follow very similar lines.

2. MODEL

2.1. The Constrained Distribution {B|A}

In the Bethe-Peierls approximation (BPA) for a single adsorbate on a
regular two-dimensional (2D) lattice, attention is focused on some
arbitrary cluster (colony) of sites on the lattice.”** (Since the lattice is
uniform, all clusters of the same size and shape are equivalent.) The size
and shape chosen for the colony reflect the range of adsorbate lateral
interactions and dictate the accuracy of the model. The basic idea of the
method is to treat the colony of sites as a (very small) open system in
equilibrium with its surroundings. Correspondingly, a grand partition
function is written for all possible states of the colony as specified by the
configurations of occupied sites and the corresponding lateral interaction
energies. Mean field parameters (Lagrange multipliers) are introduced to
account for the interaction of the cluster with its surroundings. These and
the chemical potential of the particles are determined by conservation and
self-consistency requirements. Models based on these notions have been
formulated and applied by Adams®® in order to calculate unimolecular and
bimolecular (associative) desorption spectra in a system containing a single
adsorbate interacting via nearest neighbor potentials. Five-site and
eight-site clusters are required to account for the unimolecular and
bimolecular desorption processes for an ordinary square lattice. (Subject to
the limitation of nearest neighbor interactions, the ordinary BPA is essen-
tially equivalent to the QCA.)

Our objective in this section is to describe the generalization of the
BPA to systems containing more than one type of adspecies and governed
by lateral interactions which extend beyond nearest neighbors. More
importantly, recall that we seek {B|A}, the distribution of B’s on the sites
not occupied by the immobile A’s. Since {A} is arbitrary, not all site
colonies (of equal size and shape) are equivalent, and the BPA should be
modified in order to account for this complication. To be more specific, in
describing the appropriate model we consider flat surfaces whose
adsorption sites form a regular 2D square lattice, each of which can accom-
modate only one atom, 4 or B. For simplicity, we restrict the range of B-B
and A-B interactions to nearest and next nearest neighbors. The interac-
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tion potentials will be denoted as w,, , with I, J=4 or B, and a=1 or 2
correspond to first- and second-neighbor interactions, respectively. The
A-A potentials w,,, are irrelevant for the calculation of {B|A}. Of
course, they are crucially important in determining the initial {4} and the
reaction rate, as will become apparent in the next sections.

Figure 1 shows a 12-site colony on a square lattice. Some of the sites
are occupied by the immobile A’s, others by the mobile B’s, and the rest
are vacant. The state (or configuration) of the cluster is fully specified by u
and o, which denote, respectively, the sets of sites occupied by A’s and B’s.
For the example in Fig. 1, u=(1,7,9, 11) and 0 =(2, 4, 6). Also, u and o
uniquely specify E(o|u), the “internal” energy of the cluster due to B-B
and A-B interactions within the cluster; e.g.,, for the configuration in
Fig. la, E(o|u)=2wgg,+4w 45 ,. Note that E(c|u) does not include 4-A4
interactions. E(o|u) takes into account all first- and second-neighbor
interactions associated with B atoms which in configuration ¢ happen to
occupy either one or both of the two central sites (1 and 2 in Fig. 1b) of the
cluster. In the next section we shall calculate the rate of reaction (1) by
summing (with proper weighting) over the probabilities of all con-
figurations involving an A—B pair in the center of the 12-site colony. This is
the main reason for choosing the rectangular shape for the colony. Note,
however, that to calculate these probabilities we must consider on the same
basis all possible configurations u, ¢, including those in which the
occupation of the central site is not A-B.

The interaction energy of B atoms located on the (ten)perimeter sites
(3,.., 12) of the cluster with neighboring B or 4 atoms outside the cluster is
taken into account in an average fashion, as in mean field theories. We
express this interaction energy with the surroundings as E(o)=
n o)y + n,(o)¢, where ¢ and ¢ are two mean field (Lagrange) parameters

A B
7|6(5]4
A sfiij2
A 9 [10]11]12
A
a b

Fig. 1. (a) An example of a 12-site cluster on a square lattice. The configuration of this par-
ticular cluster is u=(1,7,9, 11), 6 =(2, 4, 6). (b) The numbering convention of cluster sites.
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to be determined later. v measures the average interaction energy of a B
atorn located at one of the four “corner” sites (4, 7, 9, 12) with the surroun-
dings, and ¢ is the corresponding quantity for the six “edge” sites
(3,5,6,8,10,11). n.(o) and n,(c) are the numbers of B atoms occupying
corner and edge sites, respectively, in configuration ¢. The use of only two
energy parameters Y and ¢ corresponds to the assumption that all corner
sites within a given colony (i.e., a given u) as well as those in different
colonies are equivalent, and similarly for the edge sites. This of course is
true only in an average sense, i.e., after averaging over all 12-site colonies
corresponding to a given {4}, as clarified below. Finally, it should be
noted that instead of ¥ and ¢, we could equivalently express E(g) as
E(o)=n,(0)v,+n,(c)v,, where v, and v, are two mean field parameters
representing the average nearest and next nearest neighbor interactions
between the ten perimeter sites 3-12 and the surroundings. #(¢) and n,(o)
are the numbers of nearest and next neighbor bonds corresponding to o,
with B atoms located at corner sites contributing 2 to n,(¢) and 3 to n,(0).
The corresponding contributions of the edge atoms are 1 and 2. It is easily
verified that the two representations are equivalent, ie., ¥ and ¢ uniquely
determine v, and v, and vice versa.

Let P{o|u) denote the (conditional) probability that a 12-site colony
with a given A configuration » will be populated by B’s as specified by a.
We express this quantity in the grand canonical form

P(o|u)= eXp{ Bln(o) ug+ E(o|u)+ E(0)]}

[x] l

/1"(”) H X"AB wlo,u), 1B (o, u)énu(a) (2)

AB,o XBBa
x=1.2

[x1| —_

with Z,, the grand partition function (for a given u), defined as usual
through the normalization condition for P(c|u), ie.,

Y Plalu)=1 (3)

in which the prime on the sum restricts the summation to those ¢ com-
patible with u (i.e., no B should occupy a site already taken by 4).

In Eq. (2), ug is the chemical potential of the adsorbed B atoms, and
Ag=exp(— fug) is the absolute activity (= 1/kT). Clearly, p, must be the
same for all B’s anywhere on the lattice. n(s) is the total number of B
atoms in the cluster in configuration . The second line in (2) follows from
an explicit representation of the two energy terms E(o|u) and E (o) as
sums of first (a=1) and second (o =2) neighbor contributions. Namely,
X1s.«=€xp(—pw,, ), where, as before, w,,, is the interaction potential of

822/52/5-6-4
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order « between I and J. Here n 5 (0, u) is the number of nearest neighbor
AB bonds for a cluster in state a, u (e.g., for Fig. la this number is 4), etc.
Finally, ¢, =exp(—pfv,), where v, and v, are the mean field parameters
measuring the interaction energies between perimeter B atoms and the
surroundings, as defined above.

Equation (2) involves three parameters, A5, £, and &, (or ug, v, and
v,), which can be determined with the aid of self-consistency (conservation)
conditions. To do so, we will have to average P(g|u) over all possible u’s,
i.e., over all possible A-atom configurations of the 12-site colony. We thus
define f,= N, /N as the fraction of 12-site colonies with 4 configuration
specified by u. Of course, f, is uniquely determined by {4}, the overall,
fixed distribution of 4 atoms on the lattice. In the general case {4} is an
arbitrary distribution, and N, the number of u clusters, is determined by
direct “scanning” of the lattice. For an infinitely large lattice all choices of
sufficiently large random samples of 12-site colonies should give identical
results. In our simulations of reaction rates, where the distribution of 4’s is
modeled by MC simulations on lattices whose size M is typically on the
order of 100 x 100 sites (with periodic boundary conditions), we simply
count all colonies. Note that since each site can serve four times as site 1
(corresponding to the four rotations of the 12-site rectangle in Fig. 1b),
the total number of clusters is N=4M (partially overlapping clusters are
counted as different objects).

The averaging over all possible u yields an “average cluster” in which
the average occupation of each of the 12 sites by a B atom must be 6. We
can thus write 12 equations expressing these conditions. Of course, only
three of these equations are different, because the two central sites (1, 2)
correspond to the same equations and similarly for the four corner sites
(4,7,9, 12) and the six edge sites (3, 5, 6, 7, 10, 11) (Actually, sites 3 and 8
could be regarded and treated as different from 5, 6, 10, 11). The equations
are

Y /.Y Plalu)blo)=0, (4)

where b,(g) is a step function, b(c)=1 if in configuration ¢ site i is
occupied by B, and 0 otherwise. Substituting P(g|u«) from (2) into (4) and
solving the equations for, say, i=1,4, and 5 yields the values of i, &,
and &, which characterize P(o|u). Note that P(o|u) contains all the infor-
mation we have about {B]|A}. This of course is not enough for specifying
{B| A}, especially when long-range correlations become important (see
Section 3), but in many cases P(c|u) provides all the information one
needs.
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2.2. Reaction Rate

The rate of reaction (1) on a surface covered by immobile 4 atoms
organized according to {4} can be expressed as a (weighted) sum over all
lattice sites m,

o, . 1

dt

Here, §,,(4)=1 if site m is occupied by an A4 atom and O otherwise. ¢, is
the reaction probability per unit time for site m. Every 4 atom has a finite
reaction probability, provided a B atom can reach at least one of its four
nearest neighbor sites. (We ignore the possibility of reaction between A4 and
B which are not nearest neighbors.) Each lattice site m which is already
occupied by an 4 atom can serve as site 1 of a 12-site cluster, as in Fig. 1.
Each of its four nearest neighbors can serve as site 2. Thus, each site m
appears as site 1 in four different clusters, all of which contribute to g,,. In
addition to the 4 atom on site 1, each of these clusters may contain other
A atoms, on sites 2,..., 12, in a configuration specified by w. All clusters with
the same u are assumed to be equally reactive (an assumption which
becomes exact if we neglect the effects of 4 atoms outside the cluster). g(u),
the reaction probability of an 4 atom situated on site 1 of a « cluster is, in
turn, a sum of contributions from all possible configurations ¢ of B atoms
on the remaining sites of the cluster; the corresponding contribution to g(«)
will be denotd as ¢(¢, u). We model this quantity by the Arrhenius form

qlo, u) =by(0) vz exp{—Bleo + de (o, u) ]} (6)

where, as in (4), b,(c)=1 if site 2 is occupied by a B atom and 0 otherwise
(B atom on site 2 is a necessary condition for reaction). vy is a frequency
factor (for surface reactions typically ~10*-10'¢ sec™!), which we assume
to be independent of ¥ and o. Here ¢ is the activation energy of an isolated
AB pair and 4¢ (o, u) is the excess activation energy due to lateral interac-
tions of the reactive pair on sites 1 and 2 with its ten neighbors on sites
3,..., 12. The simplest model takes 4¢ (o, u) as a sum of all nearest and next
nearest neighbor interaction energies, e.g., for the cluster in Fig. la,
Ae (0, u)=3W, 45 +2W 51+ 2Wpp,.

With the explicit expressions for ¢(o, u) from (6) and P(o|u) from (2),
the rate of reaction (1), expressed formally in (5), can now be calculated
from

R=Ail§5m(,4) Y q(u)=%§5m(/1) 2 X Plu)g(o,u)  (7)

uem Hem o
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where the sum over uem refers to the four A-atom configurations u,
corresponding to the four 12-site clusters prescribed by the 4 atom on site
m.

2.3. Simulation of Temperature-Programmed Reactions

Temperature-programmed reaction spectroscopy (TPRS) is one of the
principal experimental techniques for extracting kinetic data, such as
activation energies and reaction orders of surface reactions.'*'*) The basic
idea of the method is to coadsorb 4 and B at temperature T, which is too
low for reaction to take place. (Note, however, that one reactant, say 4,
may be adsorbed at high temperature and then the system is quenched to a
lower temperature, at which B is added to the surface. Alternatively, both
A and B are adsorbed at or below T,.) From this moment on, the tem-
perature is raised monotonically, e.g., linearly, T(¢t)=Ty+7¢ and R is
measured as a function of 7. In general, R will first increase following the
temperature rise, but eventually will fall off because of the consumption
(and removal) of reactants from the system. The result is that R(T) shows
one or several peaks (ie., “spectrum”) at intermediate temperatures. Dif-
ferent peaks often imply different types of adsorption sites or different reac-
tion mechanisms. The locations and shapes of the peaks contain infor-
mation on the activation energies and the molecularities of the processes
taking place on the surface. The “inversion” of a TPR spectrum, ie., the
extraction of the kinetic parameters from the spectrum, is not unique.
Thus, theoretical simulations of such experiments are instructive for
shedding light on some of the ambiguities involved.

Our theoretical model for TPRS experiments consists of a com-
bination of MC simulations and the modified lattice gas model for {B| A4 }.
For each temperature, starting with T, we calculate P(g|u) and ¢(o, u) for
the given {4} and 6, as described above. These quantities are used to
calculate ¢, for all 4 atoms on the surface [cf. (5) and (6)]. The
probability that the 4 atom on site m will react during a short time interval
At is g,, At. At this point a random sampling (MC) procedure is employed
to decide whether the atom on m does or does not react during A4z. All 4’s
which happened to react during At are removed from the surface, the rate
R and the new {4} are recorded, 0, is adjusted (i.e., one B removed
together with each 4), and the temperature is raised to T+ AT. Now the
entire process repeats itself for the new temperature, and so on until the
reaction terminates.”



Surface Reaction Kinetics 1189

3. RESULTS AND DISCUSSION

In this section we present some results of a few representative
simulations of temperature-programmed reactions. We do not intend to
reproduce or predict the behavior of a specific experimental system, but
rather to examine the accuracy of the lattice gas approximation formulated
in the previous section. (Comparison with experimental studies will be
reported elsewhere.’”’) To this end, we compare two schemes for
calculating the time evolution of the reactive bimolecular system. The first
procedure is our combined MC-lattice gas (hereafter the BPA/MC or,
simply, the BP) scheme outlined in Section 2.3. The second is a full MC
simulation for all the kinetic processes, which we use as a reference for
comparison. In fact, the difference between the two procedures pertains
only to the calculation of {B|A?}. In the first scheme, {B| A} is calculated
using the BPA, while in the full MC simulation the motion and
distribution of B on the surface is modeled by (conserved) MC dynamics.
The removal of A’s due to reaction is modeled equally in both schemes.

Various quantities have been analyzed and contrasted in order to
compare the two modeling procedures. Thes include reaction rates (ie.,
TPR spectra), total and local populations, sizes and shapes of 4 islands,
and a variety of averages.”'”’ Here we skip a systematic and detailed com-
parison and concentrate on demonstrating and discussing “snapshots” of
the adspecies lateral distributions as predicted by the two schemes. All the
results shown below correspond to the same set of molecular parameters.
The lateral interaction energies, in kcal/mole, are w,, =00, w,,, =186,
Wwgp =40, and w45 | =w 45, =3.0; all other w,, , are identically zero. We
have used v, = 10" sec™! and ¢, = 28 kcal/mole [cf. (6)]. In the simulation
of temperature-programmed reactions the temperature was raised linearly,
T=1T,+ yt, with Ty =300 K and y =10 K/sec. All simulations, both in the
full MC and the BP schemes, have been carried out on a square lattice of
100 x 100 sites with periodic boundary conditions.

A few remarks should be made about the preparation of the initial dis-
tribution {A4, B} characterizing the system at the onset of the temperature
sweep. Motivated by experimental results for the O + CO reaction?® on
Pd(100) (square 2D lattice), in which O corresponds to our 4 and CO to
our B, the following conditions were assumed: At =0, 4 atoms are ran-
domly adsorbed on the surface and the system is allowed to evolve until B
is adsorbed at r=1,. In the cases considered below, 7, was chosen long
enough for 4 (10,000 MC steps) to organize in long-lived islands.*7”
During this stage we have used w,, ,=o0 and w,,,= 1.6 kcal/mole as
already mentioned, but in addition, attractive third-neighbor potentials
W43 = —0.6 kcal/mole were also included in order to favor the p(2x2)
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structure as the thermodynamically preferred state.''*’ Note, however, that
the p(2 x 2) adlayer saturates at 8 ,=0.25. Hence, if 6, or 8 ,+ 6 exceeds
this value, a transition to the less stable ¢(2 x 2) structure should be expec-
ted, at least in certain regions of the lattice. This indeed happens after B is
added at ¢,. In the simulations we let 4 and B evolve together to a new
state for another period of time ¢,. In all the results shown below, 1,
(=10,000 MC steps) is long enough so that {4, B} changes extremely
slowly after ¢, +1¢,. Because of the strong B-B and B-A repulsions, the
addition of B’s induces, at high enough coverages, compression of the
p(2x2) domains of A into ¢(2 x 2) islands, as observed experimentally.”?)
During the first two steps (i.e., when ¢<t; +1,) the temperature is kept
below the reaction threshold.

At t=1,+1, we set =0 again and start the reactive stage by increas-
ing 7. At this moment we also start the comparison between the two
modeling schemes. (At this stage we set w,, ;=0; we ignore nonreactive
desorption of A4 or B). In the full MC model we simply continue to
simulate the motion of B and the 4 + B reaction by MC sampling. On the
other hand, in the BP scheme, all we need are the probabilities of finding B
atoms on A-free sites. These are dictated by {4} and therefore in showing
snapshots of the lattice in the BP model we cannot and need not specify
where exactly the B atoms are located. Figures 2—4 show such snapshots of
(40 x 40 sections of) the lattice corresponding to three different initial
coverages of 4 and B.

Figure 2 compares the MC and BP modes for relatively low initial
coverages, 0% =15 and 0% =0.10. The initial {4} at t=0and T, =300K is
the same in both models. The next snapshot is taken at 440 K (i.e., 4 secs
later, when R reaches its maximum value). The pattern of {4} is very
similar in both models. More importantly, 8, and 6, have changed by
exactly the same amount, indicating that R is identical. Similar agreement
is indicated by the last snapshots, which are taken when the reaction is
nearly over. Thus, Fig. 2, and other results not discussed here, reveal that
the BP approximation for {B|A} is excellent for the relatively low
coverages in Fig. 2. This is not surprising because, after all, the BPA takes
into account exactly all relevant correlations within the fairly large 12-site
cluster. For the coverages considered in Fig. 2, long-range correlations
between the B atoms are weak and are not expected to affect R.

Considerably higher coverages, 8% = 0% =0.2, correspond to the initial
state in Fig. 3. The snapshots taken at 400 and 440 K reveal some differen-
ces between the {4} patterns, but the coverages at intermediate
(T =400 K) and late (T'= 440 K) stages are essentially identical, and so are
the rates, for both models. The comparison of the rates is, of course, more
informative than the {4} patterns, whose time evolution is governed by
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probabilistic rules. In other words, differences between the two {A4}’s are
partly simple statistical fluctuations. Thus, the BPA gives good results even
when the surface is in fact fully covered by 4 and B.

Finally, a case of very high initial coverage is shown in Fig. 4. The first
picture in the MC model reveals very clearly that the positions of B atoms
in one region of the lattice are strongly correlated [via the ¢(2 x 2) struc-
ture formed by B’s] with those B’s in distant regions. In fact, at these very
high coverages, some B atoms are pushed into the interior of A4 islands,
resulting in “high energy,” and thus highly reactive A-B pairs. Inspection of
the second snapshot of the MC scheme indicates that these indeed have
been the first atoms to react. Unlike in the full MC scheme, the BPA,
which takes only local correlations into account, will always favor lower
energy configurations. Thus, for example, this model gives negligible
probability for penetration of B’s into A islands. Correspondingly, the rate
predicted by the BP/MC scheme will be lower, as indeed is indicated by the
data in Fig. 4. Similarly, the TPR spectra calculated by the two schemes are
quite different, especially at the early stages of the temperature ramp.

4. CONCLUDING REMARKS

In the previous sections we have tried to show that a seemingly simple
process, such as a bimolecular reaction on a two-dimensional lattice, can in
fact be very intricate and present various theoretical challenges involving
both kinetic and thermodynamic issues. Monte Carlo and other computer
simulation techniques are rapidly developing into an almost standard (and
gradually less expansive) tool for systematic analyses of equilibrium and
nonequilibrium systems."® Nevertheless, in many cases, alternative, “more
conservative” approximate but analytical models can be used to replace (or
supplement) substantial parts of a comprehensive computer simulation,
thereby not only reducing the computational effort but also introducing
new physical insights. Our problem is, in fact, just one example
demonstrating that in a complex nonequilibrium system involving kinetic
processes which take place on very different time scales, some degrees of
freedom are always in a state of “local equilibrium.” These modes can of
course be treated by standard or appropriately modified equilibrium
methods. In our specific problem the rapidly equilibrating “degree of
freedom” has been the 2D translation of the mobile atoms whose motion is
hindered and distorted by the presence of the immobile atoms on various
lattice sites. To account for these effects, we have presented here a (non-
trivial) variation of a familiar lattice gas approximation and demonstrated
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its combination with a MC procedure in the framework of a comprehensive
kinetic modeling scheme. We believe that combinations of this sort may be
instructive in various other complex physicochemical systems.
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